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Introduction

Researchin science and mathematics education has indicated
that students sometimes produce mutually incompatible
solutions to essentially similar problems. For instance, they
provide uncongenial responses to the same problem when it is
givenin twodifferent contexts (Clough & Driver, 1986; Hiebert
& Lefevre, 1986). This observation raises issues which are of
great theoretical and practical importance to education. A
central issue is, how do various factors affect the student's
choice of response to a given problem? More specifically, how
do factorsrelated to the problem, i.e. its structure, the numerical
data, the figural aspects, and the content domain in which it is
embedded, affect the student's solution? What effects do
factorsrelated to the solver, i.e. age, grade level, and instruction,
have on his or her solution to a given problem?

These issues are usually approached by presenting students
with a variety of essentially similar problems and investigating
the relationship between the specific features of each of these
problems and students' responses (Silver, 1986; Stavy, 1990).
A less conventional way is examining students’ responses to
problems which are externally similar though essentially
different and require different solutions.

Two essentially different problems, amathematical problem
related to potential infinity and a scientific problem related to
the particulate nature of matter, were chosen for this study.
These two problems are figurally and spatially similar but since
each stems from an entirely different theoretical framework,
they require different responses. The main aims were: (a) to
determine if students tend to erroneously produce the same
response to both problems or rather give different, adequate
responses to each of them; (b) to investigate whether students'
responses change with formal, school-based instruction; and
(c) to assess the effects of exposing students to the adequate
interpretations to each of these problems.

Method
Subjects
Two-hundred upper middle-class students from the Sharon
area in Israel participated in this study. Fifty students were

randomly selected from the seventh, eighth, tenth, and twelfth
grade levels in the same school. The tenth- and twelfth-grade

students studied mathematics as their major subject.

All participating students studied mathematics and science
according to the national curriculum. The topics that the
subjects studied are as follows: In the seventh grade they did not
receive any instruction in mathematics concerning geometry or
infinite processes. At the time of the research, they had finished
studying a chapter on the particulate nature of matter. The
eighth-grade students also had not received any instruction
concerning geometry or infinite processes. In that year, they
had received formal instruction in science related to elements,
compounds, and the periodic table. The tenth-grade students
had studied basic Euclidean geometry (i.e., undefined and
defined terms, axioms, postulates, definitions, theorems, and
proofs) in the ninth and tenth grades. During these years, they
did notreceive any additional instruction in science concerning
the structure of matter. The twelfth-grade students had studied,
in the eleventh and twelfth grades, an introductory course in
calculus in which they dealt with infinite series, limits, and
integrals. They also studied, in these grades, science on a minor
level (stoichiometry, the structure of the atom, acids and bases,
oxidation and reduction, etc.).

The students were taught by several teachers, all of whom
had taughtin more than one grade level. Allteachers had atleast
a bachelor's degree in either mathematics or science, a teacher
certificate for secondary scheol, and at least three years of
teaching experience. o

The Problems
Initially, the following two problems were presented:

The successive division of a line segment

Consider a line segment AB. Divide AB into halves.
Divide each of the obtained line segments again in
halves. Continue halving the obtained line segments
in the same way. Will this process come to an end?
Explain your answer.

The successive division of a copper wire.

Consider a piece of copper wire. Divide itinto halves.
Divide each of the obtained parts again in halves.
Continue halving the obtained parts in the same way.
Will this process come to an end? Explain your
answer.
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These two problems are fundamentally different. In the first,
an ideal, geometrical segment is considered whereas the second
deals with a material, copper wire. The adequate responses to
these two problems are, in the case of the line segment, the
halving process is endless, whereas in the case of the copper
wire, the halving process stops upon reaching the atomic level.
The external similarity of the problems may encourage students
to give the same response.

The Intervention

To assess the effect of presenting the student with the clues
for adequate solutions to each of the above mentioned problems,
the subjects were exposed to the following question:

A student named Karen asked the following question,
"I understand that when dividing a copper wire time
and time again, the process will end when reaching the
atomlevel. In contrast, the successive division of a line
segment is an endless process. Why is it so?" In your
opinion, do you think that the above statement made by
Karen is correct? Why?

Students' responses to this question provided information
about changes in their answers to the two problems as a result of
the exposure to the adequate interpretations.

Procedure

The two problems and the intervention task were
administered to all students during one class period (about 45
minutes) in the first week of March, 1989. Half of the students
in each grade level received the mathematical problem first
while the other half was presented with the problems in reversed
order. The effect of the order of presentation of the problems
was not significant. Each problem appeared on a separate sheet
of paper along with other, irrelevant questions. Each sheet was
taken away after the student had responded. Then, the exposure
task was administered.

Results
Division of a Line Segment

Ascan be seen in Table 1, two types of responses were given
to the problem related to the successive division of a line
segment before the exposure to the appropriate answers: (a) the
process is endless and (b) the process will come to an end.

The frequency of theadequate, infinite response significantly
increased with grade level (X = 36.27, df = 3, p < .001) and was
relatively high in the upper grades (see Table 1).

Students used three types of justifications to the endless
response. The mostdominant one, inall grade levels, was, "One
canalways divide by two."” The percentage of students who used

this justification, which referred to the dynamic aspect of the
process, increased with grade level. The second justification
was, "There is an infinite number of points in a line segment."
This type of justification was mainly given by students in the
upper grades. It probably reflects the effects of the instruction
in geometry which emphasizes thata line segment is composed
of an infinite number of points. The third, less frequent,
Justification was, "We shall reach a point but a point can also
be divided.” This notion of a divisible point might reflect the
existence of two contradictory ideas simultaneously held by
these students: (a) the idea that the process of successive
division by two can continue endlessly and (b) a conception of
a line segment as an entity which is composed of a finite
number of points. Students who used this hybrid notion
described these two ideas in their answers. For instance, "The
line segment consists of a finite number of points, but it is
possible to divide a point into two."

Students used three types of justifications for their
inadequate response that the process of halving the line
segment will come to an end. A substantial numberof seventh-
grade students argued that, "We shall not be able to divide
anymore because the segment will become extremely small."
These students referred to the actual process of division and
emphasized its technical limitations. The second justification
was that, "The segment is finite.” This justification was
probably dominated by the idea that the segment is bounded.
Few students in this category added that the segment contains
a finite number of points. The third type of justification was,
"We shall not be able to divide anymore as we shall reach the
basic unit of the segment.” Some of the students who used this
justification (mainly the seventh-grade students who had just
studied about the particulate nature of matter) referred to atoms
while others (mainly the tenth- and twelfth- grade students who
had received rather intensive instruction in mathematics
referred to points.

Division of a Copper Wire

As can be seen in Table 2, two types of responses were
given, before intervention, to the problem related to the halving
of the copper wire: (a) the process will come to an end and (b)
the process is endless.

In the case of the copper wire, as in the case of the line
segment, the frequency of inadequate infinite responses
significantly increased with grade level (X = 11.07, df = 3, p<
.01). This surprising increment in the percentage of these
responses in the upper grade levels is probably due to the effect
of the rather intensive instruction in mathematics these students
received in the upper grades. Thisinstruction, whichemphasized
the ideal nature of line segments, might encourage students
from the upper grades todraw an inappropriate analogy between
the line segment and the copper wire.

The justifications that students gave to their answers to the
copper wire problem were similar to those given to the line
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Before Intervention After Intervention
Grade 7 8 10 12 7 8 10 12
The pr is endl
Total 26 S0 78 78 28 54 80 86
One can always divide by two 24 40 48 58 24 30 38 56
There is an infinite number of points in a line segment 0 4 26 20 4 8 24 20
We shall reach a point, but it can also be divided 2 6 4 0 0 16 18 10
The process will come to an end
Total 74 50 22 22 62 46 18 14
We shall not be able to divide anymore, because the 44 18 6 4 14 30 8 6
segment will become extremely small
The segment is finite 8 22 2 6 6 8 4 2
We shall not be able to divide anymore as we shall
reach the basic unit of the segment:
a point 4 4 12 10 14 6 2 6
an atom 18 6 2 2 28 2 4 0
Idon w 0 0 0 0 10 0 2 0
Table 2
The Division of a Copper Wire
Before Intervention After Intervention
Grade 7 8 10 12 7 8 10 12
The process will come to an end
Total 76 74 50 50 74 88 78 66
We shall not be able to divide anymore, because the 36 28 22 26 26 28 22 30
wire will become extremely small
There is a finute number of atoms in the copper wire 10 6 2 0 8 6 10 12
We shall not be able to divide anymore as we shall
reach the basic unit of the wire:
an atom 30 38 26 24 40 54 46 24
a point 0 2 0 0 0 0 0 0
The process is endless
Total 24 26 50 50 16 12 20 34
One can always divide by two 20 22 42 40 10 6 8§ 20
The wire is infinite 0 2 0 0 2 2 0 0
We shall reach an atom, but it can also be divided 4 2 8 8 4 4 12 14
I do not know 0 0 0 0 10 0 2 0

segmentproblem. Again, three main justifications were givento
the adequate, finite answers, "We shall not be able to divide
anymore because the wire will become extremely small,”
"There is a finite number of atoms in the copper wire," and "We
shall not be able to divide anymore as we shall reach a basic unit
of the copper wire." Among the justifications given to the
incorrect, infinite answers, the most common, at all grade
levels, was, "One can always divide by two." Another

justification, given by only a few students, was, "The wire is
infinite." A third justification was, "We shallreach an atom but
it can also be halved”. This last, incorrect justification could
evolve from integrating the idea that "One can always divide by
two" with the particulate theory of matter. Some of these
students inappropriately used their knowledge that an atom
consists of elementary particles and referred to it as an entity
that can be halved. For instance, one student argued that

Volume 92(7), November 1992

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



Reproduced with permission of the copyright owner.

Application of Knowledge

356

"Everything can be divided by two but I studied in science that
matter consists of a finite number of atoms. When we reach an
atom, it will explode and thus the process of dividing by two will
continue forever."

Thus far, the data show that the same answers and even the
same justifications were provided by the students to both
problems; however, these data do not provide any indication of
the consistency of responses at the individual level. Such
information is provided by examining the students' response
patterns to the two problems.

Response Patterns
to the Successive Division Problems

The four possible response patterns are presented in Table
3. Students who gave the same responses to both problems
(either finite or infinite) are included under the concordant
patterns. Those who gave different answers to the problems are
grouped under the discordant patterns.

The discordant patterns. Table 3 shows that before
intervention, the percentage of the students who showed
discordant response patterns was relatively low. As expected,
the most frequent pattern among the two discordant ones was
the correct, infinite-finite response pattern. Although the
frequency of the infinite-finite response significantly increased
with grade level (X = 12.24, df = 3, p < .001), even among the
higher grade levels, no more than 36% of the students showed
this adequate response pattern. Very few students ateach grade
level gave reversed answers to these problems---a finite answer
to the segment problem and an infinite answer to the copper
wire one.

The concordant patterns. Table 3 shows that most students,

at all grade levels, gave the same response to both problems--
either that the process of division is endless (the infinite-infinite

Table 3

pattern) or that the process will come to an end (the finite-finite
pattern). Almost all of the seventh-grade students (86%) gave
the same response to both problems. From the eighth grade
onwards, the percentage of the students who gave the same
response was between 56% and 68%.

The frequency of the infinite-infinite pattern significantly
increased with grade level (X = 18.72, df = 3, p < .001). This
increase is probably due to the extensive instruction of
mathematics in the upper grades which apparently influenced
the students' responses not only with regard to the line segment
problem but also to the copper wire one. The finite-finite
pattern significantly decreased with grade level (X = 34.76,
df =3, p<.0001). This decrease may indicate that students in
the upper grade levels gave up their initial, adequate finite
response to the copper wire problem in favor of the infinite
response.

It is notable that almost all the students who showed a
concordant response pattern also gave the same justification to
both problems. Most students who showed the infinite-infinite
pattern used the "One can always divide by two" justification.
Students who showed the finite-finite pattern gave either the
justification that "We shall not be able to divide anymore
because the segment (or the wire) will become extremely
small” or that "We shall not be able to divide anymore as we
shall reach a basic unit (an atom of a point)." Some students
explicitly referred in their answers to the apparent concordance
of these problems. For instance, "The process of dividing the
copper wire will come to an end, and this is exactly as with the
segment, it is the same principle. It will happen when we reach
the smallest part.”

The Effects of the Intervention
Table 1 shows that in each grade level, the percentages of

the correct responses which were given by the students before
and after the intervention are similar, Mcnemar tests with p of

Response Patterns to the Line Segment and to the Copper Wire Problems

Before Intervention After Intervention
Grade 7 8 10 12 7 8 10 12
Segment Wire
Discor Pattern
Total 14 42 32 44 12 54 60 56
Infinite Finite 8 34 30 36 12 48 60 54
Finite Infinite 6 8 2 8 0 6 0 2
Concordant Patterns
Total 86 58 68 56 78 46 38 4
Infinite Infinite 18 16 48 42 16 6 20 32
Finite Finite 68 42 20 14 62 40 18 12
I do not know 0 0 0 0 10 0 2 0
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.01, which were carried out for each of the grade levels, did not
indicate significant differences in any of the grade levels. Thus,
itseems that the effect of exposure to the appropriate answers on
students’ responses to the line segment problems was minor.

Although the majority of students did not change their
responses to the line segment problem, many changed their
justifications to both the finite and infinite responses after the
intervention. With respect to the infinite justifications, it is
apparent that after the intervention, the frequency of the
Justification that "One can always divide by two" decreased in
grades eight and ten while the idea that "We can reach a point but
a point can also be divided" increased in grades eight, ten, and
twelve. With regard to the finite justifications, it was evident
that in the seventh grade, the frequency of the justification "We
shall not be able to divide anymore because the segment will
become extremely small” decreased from 44% to 14%, while the
particulate explanation increased from 22% to 42%. This may
be due to the fact that seventh-grade students had, during that
year, studied the particulate nature of matter.

As can be seen in Table 2, the effect of the intervention on
students’ responses to the copper wire problems differs from its
effect on their responses to the line segment problems. After the
intervention, the percentages of the finite, correct responses to
the copper wire problem significantly increased in all grades
except for the seventh (Mcnemar tests indicate significant
differences at the levels of p < .0.01, p < .001, and p < .01 for
grades eight, ten, and twelve, respectively). When examining
the students' justifications to their finite, adequate response, it
became apparent that the percentage of students who explicitly
referred to the notion of the atom increased at all grade levels. In
respect to students’ justifications of their infinite, inadequate
response, there is a decrease at all grade levels in the number of
students who argued that "One can always divide by two."
Seventh-grade students who had abandoned this justification
are those who admitted that they did not know the answer to the
problem. Most of the students in the eighth, tenth, and twelfth
grades who gave up this justification resorted to a finite response
and referred to the atomic level. Others, who remained faithful
to the infinite response, also referred to the atomic level and
argued that "We shall reach an atom but it can also be divided."

After the exposure to the correct answers, in each grade level,
less students exhibited the erroneous concordant response
patterns, and more students exhibited the discordant, adequate,
infinite-finite response pattern (see Table 3). The percentagesof
students in the tenth and twelfth grades who exhibited the
correct, infinite-finite response pattern after the intervention
were significantly higher than those before the intervention
(Mcnemar tests indicate significant differences at the levels of
p <.001 and p < .01 for grades ten and twelve, respectively and
no significant differences for grades seven and eight). The
discordant, finite, infinite reversed pattern almost disappeared.

It is noteworthy that many of the students who correctly
responded to both problems after the intervention (but not before
it) commented on the apparent differences between the two
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problems. For instance, one student argued that "Karen is right
because it is impossible to half an atom but the division of the
line segment is infinite because there is an infinite number of
points in the line segment.”

Discussion

The first task in this study was to examine the students'
responses to two externally similar but essentially different
problems. One of these problems asked the students to determine
whether the halving of aline segment will have an end, whereas
the other problem exposed them toa similar process of halving,
yet with reference to a copper wire. The data indicate that the
majority of the students gave the same response to both
problems--either a finite response, especially with the younger
ones, or an infinite response, especially among the older ones.

These findings beg the following questions: What caused
the students to give the same response to these essentially
different problems? Why did most of the younger students use
the finite-finite response pattern whereas the older ones tended
to show the infinite-infinite pattern?

Studies which examined differences in scientific problem
solving between novice and expert solvers revealed that
inexperienced solverstend tomentally representa given problem
according to surface features whereas experienced solvers
refer to the scientific (or mathematical) concepts and principles
(Chi, Fletovich, & Glaser, 1981; Larkin & Rainard, 1984).
This may suggest that many of the subjects, who can be
regarded as inexperienced problem solvers in both science and
mathematics, responded in the same manner to both problems
because they formed mental representations which were based
on the external, figural similarity of the entities in the two
problems and on the apparent identity of the process involved.
The fact that some of the subjects explicitly referred to the
resemblance between the problems further supports the
assumption that the external resemblance between the problems
acted as a trigger which led the students to give the same
answers to both problems.

The previous paragraph suggests an explanation to the
finding that the same response was provided by the students to
both different problems; however, there is still the need to
explain why most of the younger students exhibited the finite-
finite response pattern while most of the older ones showed the
infinite-infinite response pattern. In considering this issue, it
is important to recall that studies investigating how children
and adolescents cope with the concept of infinity have found
that students gave two different, intuitive answers to problems
that dealt with infinite processes--a finite response and an
infinite response (Fischbein, Tirosh, & Melamed, 1981; Piaget
& Inhelder, 1963; Tall, 1981). Further, in problems that dealt
with successive division of line segments, a tendency towards
domination of the infinite answers in the higher grades was
observed (Duval, 1983; Fischbein, Tirosh, & Hess, 1979).
This increase was explained in terms of the effects of the
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formal, school-based mathematical instruction that dealt with
infinite processes. The findings in this study are compatible
with those of the studies on students' understanding of infinity
and can also be interpreted in light of the effect of formal,
school-based instruction. The younger students, who had
studied the particulate nature of matter but not the ideal, abstract
nature of a line segment, tended to give finite responses to both
questions. Instruction in the particulate nature of matter, which
they received in science, served as a source of support to the
intuitive, finite response pattern. Similarly, the older students,
who had been exposed to rather intensive mathematical
instruction on geometrical concepts and infinite processes,
tended to produce the infinite response. The mathematical
instruction they received supported the intuitive, infinite response
pattern.

‘Whatis particularly interesting is that many students in tenth
and twelfth grades, who had, in fact, acquired the necessary
formal knowledge to correctly respond toeach of these problems,
abandoned their finite, adequate response to the copper wire
problem in favor of the infinite one. This surprising finding
may stem from the fact that the older subjects are mathematics
majors. It may very well be thatif other students were tested (for
example, science majors), they would have yielded other
response patterns. This is still under investigation.

The results also indicate that arelatively minor intervention,
which only exposed students to the appropriate responses to
each of the problems, was very effective for students in the
upper grades. After the intervention, many of these students
limited the use of infinite model only to the line segment
problem. It is most probable that this type of intervention can
be influential only for students who hold the adequate, formal
school-based knowledge in both science and mathematics since
they can safely lean on this knowledge when confronted with
the adequate responses. The intervention impelled the older
students to disregard the external similarity and to focus on the
qualitative differences between the problems. Consequently,
some of these students were able to form different, adequate
mental representations to each of these problems.

This last statement leads to the main implications that can
be drawn from this study. For researchers who are studying the
nature of students' responses in one specific content domain, it
is imperative to consider the possible influences of knowledge
acquired in related domains on students’ responses to problems
embedded in the objective domain. Teachers should be aware
of students' natural tendency to relate to surface features of
given problems and thus should attempt to help students set the
limits for application of their newly acquired knowledge to a
specific domain.

This study, as well as others, has suggested that the mental
representation of the problem has a crucial effect on students'
responses (Behr, Reiss, Harel, Post, & Lesh, 1986; Chi, Glaser
& Rees, 1982; Kaput, 1987; Larkin, 1983). Furthermore, the
representations of inexperienced problem solvers greatly lean
onexternal, nonessential, and not necessarily scientific features

of the problem. This implies that if one intends to help learners
improve their ability to solve scientific problems, one should
devote many more efforts to develop ways to assist students in
forming mental representations that consider the scientific
nature of the problem.

References

Behr, M., Reiss, M., Harel, G, Post, T., & Lesh, R. (1986).
Qualitative proportional reasoning: Description of tasks
and development of cognitive structures. In Proceedings of
the Tenth International Conference of Psychology of
Mathematics Education (pp.235-240). London: University
of London Institute of Education.

Chi, M., Fletovich, P., & Glaser,R. (1981). Categorization and
representation of physics problems by experts and novices.
Cognitive Science, 5, 121-152.

Chi, M., Glaser, R., & Rees, E. (1982). Expertise in problem
solving. InR. Sternberg (Ed.), Advances in the Psychology
of Human Intelligence (pp. 7-75). Hillsdale, NJ: Lawrence
Erlbaum.

Clough, E., & Driver, R. (1986). A study of consistency in the
use of students' conceptual frameworks across different
tasks contexts. Science Education, 70, 473-396.

Duval,R. (1983). The obstacle of the duplication of mathematical
objects. Educational Studies in Mathematics, 14,385-414.

Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of
infinity. Educational Studies in Mathematics, 10, 3-40.

Fischbein, E., Tirosh, D., & Melamed, U. (1981). Is it possible
to measure the intuitive acceptance of a mathematical
statement? Educational Studies in Mathematics, 12, 491-
512.

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural
knowledge in mathematics: Anintroductory analysis. InJ.
Hiebert (Ed.), Conceptual and procedural knowledge: The
case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence
Erlbaum.

Kaput,J. (1987). Representation systems in mathematics. InC.
Janvier (Ed.), Problems of representation in the teaching
and learning of mathematics (pp. 19-26). Hillsdale, NJ:
Lawrence Erlbaum. ‘

Larkin, J. (1983). The role of problem representation in
physics. InD. Gentner & A. Stevens (Eds.), Mental models
(pp. 75-98). Hillsdale, NJ: Lawrence Erlbaum.

Larkin, J., & Rainard, B. (1984). A research methodology for
studying how people think. Journal of Researchin Science
Teaching, 21, 235-254.

Piaget, J., & Inhelder, B. (1963). The child’s conception of
space. London: Routledge & Kegan Paul.

Silver, E. (1986). Using conceptual and procedural knowledge:
A focus onrelationship. InJ. Hiebert (Ed.), Conceptual and
procedural knowledge: The case of mathematics (pp. 181-
198). Hillsdale, NJ: Lawrence Erlbaum.

Stavy,R. (1990). Children'sconceptions of changes in the state
of matter: From liquid (or solid) to gas. Journal for
Research in Science Teaching, 27, 247-266.

Tall, D. (1981). Intuitions of infinity. Mathematics in School,
10, 30-33.

School Science and Mathematics

— {

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



